Welcome to EarthCube Interactive Workshops!
These short courses will teach you how to conduct reproducible research using Data Sciences tools. You will be working with Python, Jupyter, Docker containerization, and Git for version control.
After these modules, you will be able to process your own research in a format suitable for analysis, writing your own analysis functions, and deriving data-driven insights via Jupyter Notebooks and RMarkdown files.
This page runs on a python3 kernel. To visit the R kernel version, click here.
Module 1: Intro to Python and Jupyter Notebooks
In this module, you will learn how to write basic Python code and how to use your Jupyter Notebooks.
Module 2: Setting up your working environment with conda
This module will teach you how to organize your environments using conda
Module 3: Intro to GitHub
This module will teach you about Version Control and how to use Git and Github.
Module 4: Introduction to Binder
Module 5: Working with RMarkdown
In this module you will create, edit and run reproducible R code documents using RMarkdown.
Module 6: Introduction to Docker
Module 7: Development best-practices including FAIR data principles
Module 8: Argovis
References and Resources
Here are scripts to re-use and links to additional references and topics to learn.